Non-Homebased Trips

Introduction

There are many problems related to non-home-based trips in traditional trip-based models arising from the fact that they are disconnected from the home-based trips with which they comprise complete tours. In order to properly represent non-home-based trips, two spatial distribution or destination/spatial choice models are required to account for both the trip’s origin location and destination location. The four-step model architecture is fundamentally flawed because it produces non-home-based trips from only one trip distribution or spatial choice model.

To address these problems, the TRM adopts an alternative approach with a simple change to the structure of the trip-based model, running the non-home-based model components after and conditional on the home-based model components instead of in parallel and independently of them as in the traditional four-step model. This relatively simple structural change significantly improves the TRM’s ability to represent non-home-based trips and their response to land use changes and transportation infrastructure investments. Running a NHB distribution or destination choice model after and conditional on home-based destination choices in this approach, provides the required second spatial distribution model to properly model both the origin and destination of NHB trips.

In this approach, NHB trips are generated separately by mode based on home-based mode choices. This essentially provides information about whether a traveler has a car with them and allows the model, despite its trip-based form, to ensure a reasonable consistency of modes on tour.

Available modes include:

  • SOV
  • HOV2
  • HOV3+
  • Auto Pay
  • Transit
  • Bike
  • Walk

The model coefficients below are the result of multiple linear regression with a forced intercept at zero. In addition, the model estimation will be scaled up to a predicted regional total. As a result of these two factors, the displayed r-squared values are not as meaningful. Instead, the value of the coefficients is in determining the relative effect that various home-based trip types have on non-home-based trip generation.

When reviewing the coefficients below, note their logical consistency: SOV NHB trips are most likely to result when the HB trip is SOV or HOV. NHB walk trips can be made when a person drives from home, but is more much more likely if they walk. These results greatly improve the TRMG2 NHB models compared to traditional trip-based construction.

Work tours

Each trip type below is a non-home-based trip on a work tour. Each tab shows a mode-specific model that estimates which home-based trips and modes generate that non-home-based trip and mode combination.

W_NH_EK12_All

These are non-home-based trips made on a work tour before or after dropping a child off at school. For example, a parent might drop off a child and then get gas before heading to work. The trip between school and the gas station is a W_NH_EK12_All trip.

SOV

term estimated_as estimate std.error statistic p.value
W_HB_EK12_All_hov2 W_HB_EK12_All_hov 0.7301 0.0088 83.4003 0.0000
W_HB_EK12_All_hov3 W_HB_EK12_All_hov 0.7301 0.0088 83.4003 0.0000
W_HB_O_All_hov2 W_HB_O_All_hov 0.0580 0.0086 6.7371 0.0000
W_HB_O_All_hov3 W_HB_O_All_hov 0.0580 0.0086 6.7371 0.0000
W_HB_O_All_sov W_HB_O_All_sov 0.0102 0.0056 1.8066 0.0709
W_HB_W_All_hov2 W_HB_W_All_auto 0.0080 0.0034 2.3756 0.0176
W_HB_W_All_hov3 W_HB_W_All_auto 0.0080 0.0034 2.3756 0.0176
W_HB_W_All_sov W_HB_W_All_auto 0.0080 0.0034 2.3756 0.0176
r_sq NA 0.0698 NA NA NA

HOV2

term estimated_as estimate std.error statistic p.value
W_HB_EK12_All_hov2 W_HB_EK12_All_hov 0.2463 0.0085 29.1102 0.0000
W_HB_EK12_All_hov3 W_HB_EK12_All_hov 0.2463 0.0085 29.1102 0.0000
W_HB_O_All_hov2 W_HB_O_All_auto 0.0351 0.0044 8.0470 0.0000
W_HB_O_All_hov3 W_HB_O_All_auto 0.0351 0.0044 8.0470 0.0000
W_HB_O_All_sov W_HB_O_All_auto 0.0351 0.0044 8.0470 0.0000
W_HB_O_All_walkbike W_HB_O_All_walkbike 0.0062 0.0274 0.2267 0.8207
r_sq NA 0.1478 NA NA NA

HOV3+

term estimated_as estimate std.error statistic p.value
W_HB_EK12_All_hov2 W_HB_EK12_All_hov 0.0952 0.0065 14.5353 0
W_HB_EK12_All_hov3 W_HB_EK12_All_hov 0.0952 0.0065 14.5353 0
W_HB_O_All_hov2 W_HB_O_All_auto 0.0225 0.0034 6.6670 0
W_HB_O_All_hov3 W_HB_O_All_auto 0.0225 0.0034 6.6670 0
W_HB_O_All_sov W_HB_O_All_auto 0.0225 0.0034 6.6670 0
r_sq NA 0.2215 NA NA NA

Auto Pay

No significant presence of this trip type in the survey (0 samples), and it is not an important source of travel demand. No model was estimated.

Transit

No significant presence of this trip type in the survey (3 samples), and it is not an important source of travel demand. No model was estimated.

Non-motorized

term estimated_as estimate std.error statistic p.value
W_HB_EK12_All_walkbike W_HB_EK12_All_walkbike 1.0286 0.0235 43.7047 0
r_sq NA 0.0000 NA NA NA

W_NH_WR_All

These are non-home-based trips made on a work tour where one trip end is related to work, but not the primary work location. A trip made to attend a business meeting is a good example.

SOV

term estimated_as estimate std.error statistic p.value
W_HB_EK12_All_hov2 W_HB_EK12_All_auto 0.0963 0.0152 6.3523 0.0000
W_HB_EK12_All_hov3 W_HB_EK12_All_auto 0.0963 0.0152 6.3523 0.0000
W_HB_O_All_hov2 W_HB_O_All_auto 0.0776 0.0081 9.6033 0.0000
W_HB_O_All_hov3 W_HB_O_All_auto 0.0776 0.0081 9.6033 0.0000
W_HB_O_All_sov W_HB_O_All_auto 0.0776 0.0081 9.6033 0.0000
W_HB_W_All_hov2 W_HB_W_All_auto 0.0180 0.0059 3.0728 0.0021
W_HB_W_All_hov3 W_HB_W_All_auto 0.0180 0.0059 3.0728 0.0021
W_HB_W_All_sov W_HB_W_All_auto 0.0180 0.0059 3.0728 0.0021
r_sq NA 0.5142 NA NA NA

HOV2

term estimated_as estimate std.error statistic p.value
W_HB_O_All_hov2 W_HB_O_All_hov 0.0134 0.0066 2.0310 0.0423
W_HB_O_All_hov3 W_HB_O_All_hov 0.0134 0.0066 2.0310 0.0423
W_HB_O_All_sov W_HB_O_All_sov 0.0341 0.0042 8.0715 0.0000
r_sq NA 0.4302 NA NA NA

HOV3+

term estimated_as estimate std.error statistic p.value
W_HB_O_All_hov2 W_HB_O_All_hov 0.0662 0.0066 9.9573 0
W_HB_O_All_hov3 W_HB_O_All_hov 0.0662 0.0066 9.9573 0
W_HB_W_All_hov3 W_HB_W_All_hov3 0.3338 0.0182 18.3353 0
r_sq NA 0.0854 NA NA NA

Auto Pay

term estimated_as estimate std.error statistic p.value
W_HB_O_All_auto_pay W_HB_O_All_auto_pay 0.4281 0.0544 7.8645 0.0000
W_HB_O_All_sov W_HB_O_All_sov 0.0031 0.0010 3.2284 0.0013
r_sq NA 0.1375 NA NA NA

Transit

No significant presence of this trip type in the survey (3 samples), and it is not an important source of travel demand. No model was estimated.

Non-motorized

term estimated_as estimate std.error statistic p.value
W_HB_EK12_All_walkbike W_HB_EK12_All_walkbike 0.7254 0.1167 6.2179 0.0000
W_HB_O_All_sov W_HB_O_All_sov 0.0175 0.0040 4.4222 0.0000
W_HB_W_All_sov W_HB_W_All_sov 0.0037 0.0025 1.4857 0.1374
W_HB_W_All_walkbike W_HB_W_All_walkbike 0.0143 0.0155 0.9282 0.3534
r_sq NA 0.3088 NA NA NA

W_NH_O_All

These are non-home-based trips made on a work tour that are not related to work or dropping off children at school. In effect, these are all other non-home-based trips made on work tours. This would include stopping to get gas on your way from home to work.

SOV

term estimated_as estimate std.error statistic p.value
W_HB_EK12_All_hov2 W_HB_EK12_All_auto 0.2445 0.0380 6.4259 0
W_HB_EK12_All_hov3 W_HB_EK12_All_auto 0.2445 0.0380 6.4259 0
W_HB_O_All_hov2 W_HB_O_All_hov 0.9186 0.0374 24.5913 0
W_HB_O_All_hov3 W_HB_O_All_hov 0.9186 0.0374 24.5913 0
W_HB_O_All_sov W_HB_O_All_sov 1.3806 0.0237 58.3367 0
r_sq NA 0.4537 NA NA NA

HOV2

term estimated_as estimate std.error statistic p.value
W_HB_O_All_hov2 W_HB_O_All_hov 0.3786 0.0188 20.1731 0.0000
W_HB_O_All_hov3 W_HB_O_All_hov 0.3786 0.0188 20.1731 0.0000
W_HB_O_All_sov W_HB_O_All_sov 0.1548 0.0120 12.9171 0.0000
W_HB_O_All_walkbike W_HB_O_All_walkbike 0.0357 0.0621 0.5749 0.5654
W_HB_W_All_hov2 W_HB_W_All_hov2 0.3066 0.0319 9.6041 0.0000
r_sq NA 0.3763 NA NA NA

HOV3+

term estimated_as estimate std.error statistic p.value
W_HB_O_All_hov2 W_HB_O_All_hov2 0.0841 0.0178 4.7219 0
W_HB_O_All_hov3 W_HB_O_All_hov3 0.8492 0.0198 42.9192 0
W_HB_W_All_hov3 W_HB_W_All_hov3 0.3228 0.0351 9.1863 0
r_sq NA 0.0950 NA NA NA

Auto Pay

No significant presence of this trip type in the survey (2 samples), and it is not an important source of travel demand. No model was estimated.

Transit

term estimated_as estimate std.error statistic p.value
W_HB_O_All_lb W_HB_O_All_lb 0.9194 0.0464 19.8041 0.0000
W_HB_O_All_walkbike W_HB_O_All_walkbike 0.6707 0.0181 36.9936 0.0000
W_HB_W_All_hov2 W_HB_W_All_hov 0.0108 0.0079 1.3709 0.1705
W_HB_W_All_hov3 W_HB_W_All_hov 0.0108 0.0079 1.3709 0.1705
r_sq NA 0.0288 NA NA NA

Non-motorized

term estimated_as estimate std.error statistic p.value
W_HB_O_All_sov W_HB_O_All_auto 0.1982 0.0117 16.9974 0
W_HB_O_All_walkbike W_HB_O_All_walkbike 0.9543 0.0585 16.3209 0
W_HB_W_All_sov W_HB_W_All_sov 0.0299 0.0073 4.0990 0
r_sq NA 0.3942 NA NA NA

Non-work tours

Each trip type below is a non-home-based trip made on a non-work tour. Each tab shows a mode-specific model that estimates which home-based trips and modes generate that non-home-based trip and mode combination.

For many of these trip types, the models have two additional parameters alpha and beta. These coefficients control the impact of zonal accessibility on the models and are discussed in detail in the next section.

N_NH_K12_All

These are non-home-based trips made on a non-work tour with one trip end at school (K-12). This includes children attending school and (non-working) parents dropping off children at school.

SOV

term estimated_as estimate std.error statistic p.value
N_HB_K12_All_hov2 N_HB_K12_All_hov 0.0050 0.0014 3.5007 0.0005
N_HB_K12_All_hov3 N_HB_K12_All_hov 0.0050 0.0014 3.5007 0.0005
N_HB_K12_All_sov N_HB_K12_All_sov 0.0277 0.0022 12.8787 0.0000
N_HB_OD_Long_sov N_HB_OD_All_sov 0.0032 0.0010 3.3380 0.0008
N_HB_OD_Short_sov N_HB_OD_All_sov 0.0032 0.0010 3.3380 0.0008
alpha NA 0.5897 0.0958 -8.3851 0.0000
gamma NA 0.2536 0.0454 5.5820 0.0000
r_sq NA 0.0792 NA NA NA

HOV2

term estimated_as estimate std.error statistic p.value
N_HB_K12_All_hov2 N_HB_K12_All_hov2 0.0397 0.0028 14.0875 0.0000
N_HB_K12_All_hov3 N_HB_K12_All_hov3 0.0190 0.0025 7.6022 0.0000
N_HB_K12_All_school_bus N_HB_K12_All_school_bus 0.0043 0.0025 1.7535 0.0795
N_HB_OD_Long_hov2 N_HB_OD_Long_hov 0.0056 0.0015 3.6165 0.0003
N_HB_OD_Long_hov3 N_HB_OD_Long_hov 0.0056 0.0015 3.6165 0.0003
N_HB_OD_Short_hov2 N_HB_OD_Short_hov2 0.0059 0.0028 2.1139 0.0345
N_HB_OD_Short_hov3 N_HB_OD_Short_hov3 0.0195 0.0029 6.8004 0.0000
alpha NA 0.3182 0.1512 -11.3338 0.0000
gamma NA 0.5507 0.0717 7.6783 0.0000
r_sq NA 0.1235 NA NA NA

HOV3+

term estimated_as estimate std.error statistic p.value
N_HB_K12_All_hov2 N_HB_K12_All_hov 0.0490 0.0025 19.9428 0.0000
N_HB_K12_All_hov3 N_HB_K12_All_hov 0.0490 0.0025 19.9428 0.0000
N_HB_OD_Long_hov2 N_HB_OD_Long_hov2 0.0099 0.0030 3.3093 0.0009
N_HB_OD_Long_hov3 N_HB_OD_Long_hov3 0.0083 0.0031 2.6859 0.0072
N_HB_OD_Short_hov2 N_HB_OD_Short_hov2 0.0282 0.0038 7.3718 0.0000
N_HB_OD_Short_hov3 N_HB_OD_Short_hov3 0.0295 0.0039 7.5407 0.0000
alpha NA 0.3046 0.1831 -10.5809 0.0000
gamma NA 0.5705 0.0868 6.5682 0.0000
r_sq NA 0.1371 NA NA NA

Auto Pay

No significant presence of this trip type in the survey (1 sample), and it is not an important source of travel demand. No model was estimated.

Transit

No significant presence of this trip type in the survey (5 samples), and it is not an important source of travel demand. No model was estimated.

Non-motorized

term estimated_as estimate std.error statistic p.value
N_HB_K12_All_hov2 N_HB_K12_All_auto 0.0062 0.0010 6.4399 0.0000
N_HB_K12_All_hov3 N_HB_K12_All_auto 0.0062 0.0010 6.4399 0.0000
N_HB_K12_All_sov N_HB_K12_All_auto 0.0062 0.0010 6.4399 0.0000
N_HB_K12_All_school_bus N_HB_K12_All_school_bus 0.0062 0.0017 3.5959 0.0003
N_HB_K12_All_walkbike N_HB_K12_All_walkbike 0.0260 0.0056 4.6034 0.0000
N_HB_OD_Short_hov2 N_HB_OD_Short_hov 0.0037 0.0013 2.7155 0.0066
N_HB_OD_Short_hov3 N_HB_OD_Short_hov 0.0037 0.0013 2.7155 0.0066
N_HB_OD_Short_walkbike N_HB_OD_Short_walkbike 0.0049 0.0018 2.6384 0.0083
alpha NA 1.0690 0.0070 -41.6507 0.0000
gamma NA 0.0883 0.0092 9.5699 0.0000
r_sq NA 0.0779 NA NA NA

N_NH_OME_All

These are non-home-based trips made on a non-work tour where neither trip end is a K12 school and at least one end is an “OME” activity type. This includes the most common reasons people spend money: shopping, dining, and maintenance activities.

SOV

term estimated_as estimate std.error statistic p.value
N_HB_OD_Long_hov2 N_HB_OD_All_hov 0.0193 0.0082 2.3662 0.018
N_HB_OD_Long_hov3 N_HB_OD_All_hov 0.0193 0.0082 2.3662 0.018
N_HB_OD_Short_hov2 N_HB_OD_All_hov 0.0193 0.0082 2.3662 0.018
N_HB_OD_Short_hov3 N_HB_OD_All_hov 0.0193 0.0082 2.3662 0.018
N_HB_OD_Long_sov N_HB_OD_Long_sov 0.0992 0.0102 9.7562 0.000
N_HB_OD_Short_sov N_HB_OD_Short_sov 0.1034 0.0153 6.7536 0.000
N_HB_OME_All_sov N_HB_OME_All_sov 0.5840 0.0095 61.4779 0.000
N_HB_OMED_All_sov N_HB_OMED_All_sov 0.2348 0.0307 7.6431 0.000
alpha NA 0.1098 0.3314 -11.0764 0.000
gamma NA 1.0454 0.1569 6.6638 0.000
r_sq NA 0.5160 NA NA NA

HOV2

term estimated_as estimate std.error statistic p.value
N_HB_OD_Long_sov N_HB_OD_All_sov 0.0813 0.0080 10.1000 0.0000
N_HB_OD_Short_sov N_HB_OD_All_sov 0.0813 0.0080 10.1000 0.0000
N_HB_OD_Long_hov2 N_HB_OD_Long_hov2 0.2281 0.0142 16.0705 0.0000
N_HB_OD_Short_hov2 N_HB_OD_Short_hov2 0.1968 0.0183 10.7560 0.0000
N_HB_OME_All_hov2 N_HB_OME_All_hov 0.2710 0.0071 38.2199 0.0000
N_HB_OME_All_hov3 N_HB_OME_All_hov 0.2710 0.0071 38.2199 0.0000
N_HB_OME_All_sov N_HB_OME_All_sov 0.0269 0.0090 2.9839 0.0029
N_HB_OMED_All_hov2 N_HB_OMED_All_hov2 0.3699 0.0319 11.5886 0.0000
alpha NA 0.2314 0.3219 -10.7117 0.0000
gamma NA 0.6957 0.1525 4.5629 0.0000
r_sq NA 0.5620 NA NA NA

HOV3+

term estimated_as estimate std.error statistic p.value
N_HB_OD_Long_hov3 N_HB_OD_Long_hov3 0.1689 0.0104 16.2646 0.0000
N_HB_OD_Short_hov2 N_HB_OD_Short_hov2 0.0469 0.0129 3.6340 0.0003
N_HB_OD_Short_hov3 N_HB_OD_Short_hov3 0.1473 0.0132 11.1721 0.0000
N_HB_OME_All_hov2 N_HB_OME_All_hov2 0.0120 0.0063 1.9063 0.0566
N_HB_OME_All_hov3 N_HB_OME_All_hov3 0.5080 0.0086 59.2615 0.0000
N_HB_OME_All_sov N_HB_OME_All_sov 0.0127 0.0064 2.0009 0.0454
N_HB_OMED_All_hov3 N_HB_OMED_All_hov3 0.2359 0.0335 7.0483 0.0000
alpha NA 0.1347 0.2564 -12.2073 0.0000
gamma NA 0.9546 0.1215 7.8579 0.0000
r_sq NA 0.3912 NA NA NA

Auto Pay

No significant presence of this trip type in the survey (21 samples), and it is not an important source of travel demand. No model was estimated.

Transit

term estimated_as estimate std.error statistic p.value
N_HB_OD_Long_lb N_HB_OD_Long_lb 0.0414 0.0079 5.2654 0.0000
N_HB_OD_Short_lb N_HB_OD_Short_lb 0.2998 0.0097 30.8129 0.0000
N_HB_OME_All_lb N_HB_OME_All_lb 0.3018 0.0077 39.0659 0.0000
N_HB_OME_All_walkbike N_HB_OME_All_walkbike 0.0097 0.0025 3.8553 0.0001
r_sq NA 0.0364 NA NA NA

Non-motorized

term estimated_as estimate std.error statistic p.value
N_HB_K12_All_lb N_HB_K12_All_lb 0.0871 0.0482 1.8057 0.0710
N_HB_OD_Long_auto_pay N_HB_O_All_auto_pay 0.4460 0.0191 23.2954 0.0000
N_HB_OD_Short_auto_pay N_HB_O_All_auto_pay 0.4460 0.0191 23.2954 0.0000
N_HB_OME_All_auto_pay N_HB_O_All_auto_pay 0.4460 0.0191 23.2954 0.0000
N_HB_OMED_All_auto_pay N_HB_O_All_auto_pay 0.4460 0.0191 23.2954 0.0000
N_HB_OD_Long_lb N_HB_OD_All_lb 0.0730 0.0218 3.3536 0.0008
N_HB_OD_Short_lb N_HB_OD_All_lb 0.0730 0.0218 3.3536 0.0008
N_HB_OD_Long_walkbike N_HB_OD_Long_walkbike 0.0370 0.0092 4.0270 0.0001
N_HB_OD_Short_sov N_HB_OD_Short_sov 0.0141 0.0054 2.5946 0.0095
N_HB_OD_Short_walkbike N_HB_OD_Short_walkbike 0.0333 0.0064 5.1591 0.0000
N_HB_OME_All_hov2 N_HB_OME_All_hov 0.0087 0.0027 3.2581 0.0011
N_HB_OME_All_hov3 N_HB_OME_All_hov 0.0087 0.0027 3.2581 0.0011
N_HB_OME_All_lb N_HB_OME_All_lb 0.0644 0.0274 2.3516 0.0187
N_HB_OME_All_sov N_HB_OME_All_sov 0.0242 0.0034 7.1388 0.0000
N_HB_OME_All_walkbike N_HB_OME_All_walkbike 0.0913 0.0089 10.2424 0.0000
N_HB_OMED_All_walkbike N_HB_OME_All_walkbike 0.0913 0.0089 10.2424 0.0000
N_HB_OMED_All_hov2 N_HB_OMED_All_hov 0.0215 0.0099 2.1577 0.0310
N_HB_OMED_All_hov3 N_HB_OMED_All_hov 0.0215 0.0099 2.1577 0.0310
alpha NA 1.0069 0.0143 -74.5180 0.0000
gamma NA 0.0169 0.0189 0.8917 0.3726
r_sq NA 0.3255 NA NA NA

N_NH_O_All

These non-home-based trips are those where neither end is a K12 school or a shopping/dining/maintenance activity (OME). In effect, these are all other non-home-based trips made on non-work tours. Visiting friends or family at their home is an example of this trip type.

SOV

term estimated_as estimate std.error statistic p.value
N_HB_OD_Long_hov2 N_HB_OD_All_hov 0.0238 0.0041 5.7806 0
N_HB_OD_Long_hov3 N_HB_OD_All_hov 0.0238 0.0041 5.7806 0
N_HB_OD_Short_hov2 N_HB_OD_All_hov 0.0238 0.0041 5.7806 0
N_HB_OD_Short_hov3 N_HB_OD_All_hov 0.0238 0.0041 5.7806 0
N_HB_OD_Long_sov N_HB_OD_All_sov 0.1079 0.0043 25.2109 0
N_HB_OD_Short_sov N_HB_OD_All_sov 0.1079 0.0043 25.2109 0
N_HB_OME_All_sov N_HB_OME_All_sov 0.0321 0.0045 7.0767 0
N_HB_OMED_All_sov N_HB_OME_All_sov 0.0321 0.0045 7.0767 0
alpha NA 0.2122 0.2584 -12.0121 0
gamma NA 0.7377 0.1225 6.0198 0
r_sq NA 0.3822 NA NA NA

HOV2

term estimated_as estimate std.error statistic p.value
N_HB_OD_Long_hov2 N_HB_OD_Long_auto 0.0222 0.0040 5.5898 0.0000
N_HB_OD_Long_hov3 N_HB_OD_Long_auto 0.0222 0.0040 5.5898 0.0000
N_HB_OD_Long_sov N_HB_OD_Long_auto 0.0222 0.0040 5.5898 0.0000
N_HB_OD_Short_hov2 N_HB_OD_Short_hov 0.1266 0.0073 17.2242 0.0000
N_HB_OD_Short_hov3 N_HB_OD_Short_hov 0.1266 0.0073 17.2242 0.0000
N_HB_OD_Short_sov N_HB_OD_Short_sov 0.1619 0.0085 19.0696 0.0000
N_HB_OME_All_hov2 N_HB_OME_All_hov 0.0117 0.0041 2.8574 0.0043
N_HB_OME_All_hov3 N_HB_OME_All_hov 0.0117 0.0041 2.8574 0.0043
N_HB_OME_All_sov N_HB_OME_All_sov 0.0110 0.0052 2.1231 0.0338
N_HB_OMED_All_hov2 N_HB_OMED_All_hov 0.0999 0.0152 6.5694 0.0000
N_HB_OMED_All_hov3 N_HB_OMED_All_hov 0.0999 0.0152 6.5694 0.0000
alpha NA 0.1589 0.2479 -13.7932 0.0000
gamma NA 0.8764 0.1176 7.4555 0.0000
r_sq NA 0.3316 NA NA NA

HOV3+

term estimated_as estimate std.error statistic p.value
N_HB_K12_All_hov2 N_HB_K12_All_auto 0.0476 0.0038 12.3978 0.0000
N_HB_K12_All_hov3 N_HB_K12_All_auto 0.0476 0.0038 12.3978 0.0000
N_HB_K12_All_sov N_HB_K12_All_auto 0.0476 0.0038 12.3978 0.0000
N_HB_OD_Long_hov2 N_HB_OD_Long_auto 0.0284 0.0030 9.5192 0.0000
N_HB_OD_Long_hov3 N_HB_OD_Long_auto 0.0284 0.0030 9.5192 0.0000
N_HB_OD_Long_sov N_HB_OD_Long_auto 0.0284 0.0030 9.5192 0.0000
N_HB_OD_Short_hov2 N_HB_OD_Short_hov2 0.0727 0.0081 8.9965 0.0000
N_HB_OD_Short_hov3 N_HB_OD_Short_hov3 0.1589 0.0081 19.6750 0.0000
N_HB_OD_Short_sov N_HB_OD_Short_sov 0.0135 0.0064 2.1096 0.0349
N_HB_OME_All_hov2 N_HB_OME_All 0.0048 0.0024 2.0019 0.0453
N_HB_OME_All_hov3 N_HB_OME_All 0.0048 0.0024 2.0019 0.0453
N_HB_OME_All_sov N_HB_OME_All 0.0048 0.0024 2.0019 0.0453
alpha NA 0.1692 0.2356 -14.2709 0.0000
gamma NA 0.8498 0.1117 7.6048 0.0000
r_sq NA 0.2534 NA NA NA

Auto Pay

term estimated_as estimate std.error statistic p.value
N_HB_OD_Long_auto_pay N_HB_OD_Long_auto_pay 0.2106 0.0028 75.6171 0
N_HB_OD_Short_auto_pay N_HB_OD_Short_auto_pay 0.0000 0.0055 0.0000 1
N_HB_OD_Short_sov N_HB_OD_Short_sov 0.0000 0.0003 0.0000 1
r_sq NA 0.0132 NA NA NA

Transit

term estimated_as estimate std.error statistic p.value
N_HB_OD_Long_lb N_HB_OD_Long_lb 0.0761 0.0139 5.4637 0.0000
N_HB_OD_Short_lb N_HB_OD_Short_lb 0.6860 0.0180 38.0847 0.0000
N_HB_OD_Short_sov N_HB_OD_Short_sov 0.0056 0.0027 2.0806 0.0375
N_HB_OD_Short_walkbike N_HB_OD_Short_walkbike 0.0082 0.0032 2.5627 0.0104
N_HB_OME_All_lb N_HB_OME_All_lb 0.0794 0.0137 5.7998 0.0000
N_HB_OMED_All_lb N_HB_OMED_All_lb 0.4658 0.0258 18.0571 0.0000
r_sq NA 0.0395 NA NA NA

Non-motorized

term estimated_as estimate std.error statistic p.value
N_HB_OD_Long_walkbike N_HB_OD_Long_walkbike 0.0437 0.0086 5.0645 0.0000
N_HB_OD_Short_sov N_HB_OD_OME_sov 0.0115 0.0027 4.3120 0.0000
N_HB_OME_All_sov N_HB_OD_OME_sov 0.0115 0.0027 4.3120 0.0000
N_HB_OD_Short_hov2 N_HB_OD_Short_hov2 0.0254 0.0065 3.9067 0.0001
N_HB_OD_Short_hov3 N_HB_OD_Short_hov3 0.0553 0.0066 8.3890 0.0000
N_HB_OD_Short_walkbike N_HB_OD_Short_walkbike 0.0286 0.0060 4.7268 0.0000
N_HB_OME_All_walkbike N_HB_OME_All_walkbike 0.0038 0.0084 0.4535 0.6502
alpha NA 1.0668 0.0132 -55.0747 0.0000
gamma NA 0.1042 0.0175 5.9600 0.0000
r_sq NA 0.2255 NA NA NA

Boosting charts

“Boosting” is an approach borrowed from machine learning where the errors of a previous model used to estimate a second model. The models shown above illustrate the link between home- and non-home-based trips by mode, but intuition and experience tells us that accessibility should also influence NHB trip making. Travel to a central business district is more likely to lead to further trips compared to traveling to a rural zone.

The chart below shows how accessibility impacts each trip type and mode combination. The y-axis is a simple factor. When the factor is 1, the trip rates will be the same as displayed in the tables above. A y-value of 0.5 means the trip rates will be reduced by 50 percent. Conversely, a y-value of 1.5 means that trip rates are increased by 50 percent. With this additional factor, the TRMG2 will understand the role that accessibility plays in NHB trip generation.

While no zone in the Triangle region has an auto accessibility below four, walk accessibilities can approach zero. If a zone has limited walk accessibility, the boosted model will ensure that few (if any) NHB walk trips are produced.

This same approach was attempted for transit, but was discarded after it returned spurious results. These counter-intuitive results are likely due to the nature of the transit production models, which are driven almost entirely by home-based transit trips. These can only occur where transit access exists. By contrast, walk production models are influenced heavily by drive modes, which are common in all zones regardless of walk accessibility. This is why the walk models benefit from accessibility boosting while transit do not.

For NHB auto trips, the slope of the line indicates the sensitivity to accessibility. For example, the least sensitive trip is the K12 SOV trip, which can be made after a parent drops a child off at school. For these trips, the accessibility of the school zone is not as important. On the other hand, group shopping trips (OME HOV) are the most sensitive to accessibility. These relationships between trip type and sensitivity to accessibility are intuitive.

Chained NHB Trips

The models above predict non-home-based trips using home-based trip ends; however, multiple NHB trips can be chained together. Three NHB trips in a row result in a middle trip where neither trip end is coincident with a home-based attraction from the same tour. If these chained NHB trips have a different distribution pattern, then home-based attractions would not be sufficient to predict the full range of NHB behavior.

In previous work, Caliper tested this question and repeatedly found that the pattern of the chained NHB trip ends are not significantly different in distribution compared to home-based trip ends. Caliper used the Triangle survey to confirm this assumption for the TRMG2. To do this, the HB attractions and NHB trip ends were aggregated to the TAZ and correlation was computed. The correlation value of 0.824 confirms that these chained trips ends are highly correlated with home-based trip attractions. Their patterns can be adequately captured by the NHB models already estimated. Other than calibration to ensure accurate NHB trip totals, no special handling is needed.

The two maps below show this correlation visually.

HB Attractions

NH Trip Ends

Time of Day Adjustment

The independent feedback by time of day in TRMMG2 presents a unique challenge for NHB. NHB and HB trips have very different time of day patterns (see Time of Day documentation), but NHB generation is simply rates multiplied by HB trip ends. Without correction, this would mean that the NHB trips would have the same distribution as HB trips. To correct this, Caliper calculated adjustment factors by tour type, mode, and time of day. This was done by comparing raw model outputs back to the observed NHB trips from the survey.

The easiest way to understand the table below is by highlighting one row as an example. For SOV trips on work tours, these factors move NHB trips out of the AM and NT periods and into the MD and PM. Another way of saying it is that, compared to HB trips, NHB trips are less likely in the AM/NT and more likely in the MD/PM. The large mid day factor reflects lunch trips and other mid-day activities. The relative size of the AM and PM periods confirms what we know: that stops are more likely to be made on the way home compared to the way to work (e.g. picking up groceries).

Tour Type Mode AM MD NT PM
NonWork Auto Pay 0.80 6.00 0.76 6.33
NonWork HOV2 0.85 1.48 0.62 0.94
NonWork HOV3 0.86 1.41 1.05 1.54
NonWork SOV 1.39 1.69 0.45 0.74
NonWork Transit 2.37 6.09 0.45 1.97
NonWork Nonmotorized 1.37 1.96 1.19 1.56
Work Auto Pay 0.57 3.47 0.82 2.78
Work HOV2 0.86 3.37 0.46 1.01
Work HOV3 0.69 2.50 0.43 1.42
Work SOV 0.87 3.56 0.38 1.33
Work Transit 7.04 8.60 1.37 3.76
Work Nonmotorized 0.70 5.20 0.38 0.60




TransCAD GIS Software, 2022